Bayesian analysis of Spatial Panel Autoregressive Models with time-varying Endogenous Spatial Weights Matrices and Common Factors-厦门大学经济学院统计学与数据科学系

Bayesian analysis of Spatial Panel Autoregressive Models with time-varying Endogenous Spatial Weights Matrices and Common Factors

主讲人:韩晓祎助理教授
主讲人简介:

Assistant Professor in WISE

Homepage: hanxiaoyi.weebly.com/

主持人:林细细 副教授、方颖 副教授
简介:

Abstract: This paper examines the specification and estimation of spatial panel autoregressive (SAR) models with dynamic,time-varying endogenous spatial weights matrices and common factors.  Motivated  by the spillover effects of  state  Medicaid  spending  on  welfare  programs,  we  combine  the  features  of  endogenous time-varying   weights  matrices  and  common  factors  for  the  first  time  in  the  SAR  panel  models.  In this particular  application,  endogeneity of the spatial weights matrices  comes  from the correlation of “economic distance” and the disturbances in the SAR equation.  Common  factors  are introduced to control for common shocks to all states  and  factor  loadings  may  capture  heterogeneity in states’ responses. For the estimation, the Bayesian MCMC method is  developed.  Identification  of factors and factor loadings, and the corresponding model  selection  issues  based upon   the Bayes factor and the deviance information criterion (DIC)  are  also  explored.    

 

时间:2015-03-18(星期三)16:40-18:00
地点:N303 经济楼/Economics Building
主办单位:王亚南经济研究院、经济学院
承办单位:
类型:系列讲座
专题网站:
联系人信息:

关闭