Semiparametric regression analysis of longitudinal skewed data-厦门大学经济学院统计学与数据科学系

Semiparametric regression analysis of longitudinal skewed data

主讲人:林华珍 教授
主讲人简介:

林华珍教授简历

主持人:
简介:
AbstractIn this paper we develop a new semi-parametric regression model for  longitudinal  data. In the new model, we allow the transformation function and the baseline  function to be unknown. The proposed model can provide a much broader class of models than  the existing additive and multiple models. Our estimators for the regression parameters, the transformation function and the baseline function are asymptotically normal, particularly,  the estimators for regression parameters and the transformation function converge to their true values at the rate $n^{-1/2}$, the convergence rate that one could expect for a parametric model. In a simulation study, we demonstrate that the proposed semiparametric method is robust with little loss of efficiency. Finally, we apply the new method to a study on longitudinal health care costs.
 
Key words: Semiparametric;  transformation  model; additive model; multiple model; longitudinal data.
 
 
This is a co-working paper with Ling Zhou and Xiao-Hua Zhou.
 
时间:2014-11-10 (Mon) 16:30-18:00
地点:N303 经济楼/Economics Building
主办单位:王亚南经济研究院、经济学院
承办单位:
类型:系列讲座
专题网站:
联系人信息:

关闭