Learning Robust Decision Rules for Censored and Confounded Data-厦门大学经济学院统计学与数据科学系

Learning Robust Decision Rules for Censored and Confounded Data

主讲人:崔逸凡
主讲人简介:

崔逸凡,浙江大学长聘副教授(研究员),博士生导师。北卡罗来纳大学教堂山分校统计与运筹专业博士,曾任宾夕法尼亚大学沃顿商学院博士后研究员、新加坡国立大学统计与数据科学系助理教授。国家级青年人才计划入选者(2021)。

主持人:韩晓祎
简介:

In this talk, we propose two robust criteria for learning optimal treatment rules with censored survival outcomes. The first one aims to identify a treatment rule that maximizes the restricted mean survival time, where the restriction is specified by a given quantile such as the median; the second one focuses on maximizing buffered survival probabilities, with the threshold adaptively adjusted to account for the restricted mean survival time. Moreover, we develop robust treatment rules that enable reliable policy recommendations when unmeasured confounding is present, using the proximal causal inference framework. Simulation studies and real-world applications demonstrate the superior performance of the proposed methods.

时间:2025-11-25 (Tuesday) 16:30-18:00
地点:经济楼C108,腾讯会议:565 349 718
主办单位:厦门大学邹至庄经济研究院、厦门大学-中国科学院计量建模与经济政策研究基础科学中心、中国科学院数学与系统科学研究院预测科学研究中心、中国科学院大学经济与管理学院
承办单位:
类型:系列讲座
专题网站:
联系人信息:

关闭